Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(35): e202208189, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35789180

RESUMO

Mechanically interlocked derivatives of carbon nanotubes (MINTs) are interesting nanotube products since they show high stability without altering the carbon nanotube structure. So far, MINTs have been synthesized using ring-closing metathesis, disulfide exchange reaction, H-bonding or direct threading with macrocycles. Here, we describe the encapsulation of single-walled carbon nanotubes within a palladium-based metallosquare. The formation of MINTs was confirmed by a variety of techniques, including high-resolution transmission electron microscopy. We find the making of these MINTs is remarkably sensitive to structural variations of the metallo-assemblies. When a metallosquare with a cavity of appropriate shape and size is used, the formation of the MINT proceeds successfully by both templated clipping and direct threading. Our studies also show indications on how supramolecular coordination complexes can help expand the potential applications of MINTs.

2.
J Am Chem Soc ; 143(50): 21286-21293, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34825564

RESUMO

Atomic-scale reproducibility and tunability endorse magnetic molecules as candidates for spin qubits and spintronics. A major challenge is to implant those molecular spins into circuit geometries that may allow one, two, or a few spins to be addressed in a controlled way. Here, the formation of mechanically bonded, magnetic porphyrin dimeric rings around carbon nanotubes (mMINTs) is presented. The mechanical bond places the porphyrin magnetic cores in close contact with the carbon nanotube without disturbing their structures. A combination of spectroscopic techniques shows that the magnetic geometry of the dimers is preserved upon formation of the macrocycle and the mMINT. Moreover, the metallic core selection determines the spin location in the mMINT. The suitability of mMINTs as qubits is explored by measuring their quantum coherence times (Tm). Formation of the dimeric ring preserves the Tm found in the monomer, which remains in the µs scale for mMINTs. The carbon nanotube is used as vessel to place the molecules in complex circuits. This strategy can be extended to other families of magnetic molecules. The size and composition of the macrocycle can be tailored to modulate magnetic interactions between the cores and to introduce magnetic asymmetries (heterometallic dimers) for more complex molecule-based qubits.

3.
Nanoscale Horiz ; 6(7): 551-558, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33889898

RESUMO

The building of van der Waals heterostructures and the decoration of 2D materials with organic molecules share a common goal: to obtain ultrathin materials with tailored properties. Performing controlled chemistry on van der Waals heterostructures would add an extra level of complexity, providing a pathway towards 2D-2D-0D mixed-dimensional heterostructures. Here we show that thiol-ene-like "click" chemistry can be used to decorate franckeite, a naturally occurring van der Waals heterostructure with maleimide reagents. ATR-IR and NMR analyses corroborate the Michael addition mechanism via the formation of a S-C covalent bond, while Raman and HR-TEM show that the SnS2-PbS alternating structure of franckeite is preserved, and suggest that SnS2 reacts preferentially, which is confirmed through XPS. We illustrate how this methodology can be used to add functional molecular moieties by decorating franckeite with porphyrins. UV-vis-NIR spectroscopy confirms that the chromophore ground state remains operative, showing negligible ground-state interactions with the franckeite. Excited-state interactions across the hybrid interface are revealed. Time-resolved photoluminescence confirms the presence of excited-state deactivation in the linked porphyrin ascribed to energy transfer to the franckeite.

4.
Nat Commun ; 12(1): 1578, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707459

RESUMO

Spin crossover (SCO) molecules are promising nanoscale magnetic switches due to their ability to modify their spin state under several stimuli. However, SCO systems face several bottlenecks when downscaling into nanoscale spintronic devices: their instability at the nanoscale, their insulating character and the lack of control when positioning nanocrystals in nanodevices. Here we show the encapsulation of robust Fe-based SCO molecules within the 1D cavities of single-walled carbon nanotubes (SWCNT). We find that the SCO mechanism endures encapsulation and positioning of individual heterostructures in nanoscale transistors. The SCO switch in the guest molecules triggers a large conductance bistability through the host SWCNT. Moreover, the SCO transition shifts to higher temperatures and displays hysteresis cycles, and thus memory effect, not present in crystalline samples. Our results demonstrate how encapsulation in SWCNTs provides the backbone for the readout and positioning of SCO molecules into nanodevices, and can also help to tune their magnetic properties at the nanoscale.

5.
Adv Mater ; 31(4): e1805360, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30511747

RESUMO

Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proven that strain-induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid-state devices.

6.
Chem Sci ; 9(33): 6779-6784, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310610

RESUMO

We describe the synthesis of rotaxane-type species composed of macrocyclic porphyrin rings mechanically interlocked with SWCNT threads. The formation of mechanically interlocked SWCNTs (MINTs) proceeds with chiral selectivity, and was confirmed by spectroscopic and analytical techniques and adequate control experiments, and corroborated by high-resolution electron microscopy. From a thorough characterization of the MINTs through UV-vis-NIR absorption, fluorescence, Raman, and transient absorption spectroscopy we analyse in detail the electronic interactions of the porphyrins and the SWCNTs in the ground and excited states.

7.
Chem Sci ; 9(17): 4176-4184, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29780548

RESUMO

Due to their outstanding electronic and mechanical properties, single-walled carbon nanotubes (SWCNTs) are promising nanomaterials for the future generation of optoelectronic devices and composites. However, their scarce solubility limits their application in many technologies that demand solution-processing of high-purity SWCNT samples. Although some non-covalent functionalization approaches have demonstrated their utility in extracting SWCNTs into different media, many of them produce short-lived dispersions or ultimately suffer from contamination by the dispersing agent. Here, we introduce an unprecedented strategy that relies on a cooperative clamping process. When mixing (6,5)SWCNTs with a dinucleoside monomer that is able to self-assemble in nanorings via Watson-Crick base-pairing, a synergistic relationship is established. On one hand, the H-bonded rings are able to associate intimately with SWCNTs by embracing the tube sidewalls, which allows for an efficient SWCNT debundling and for the production of long-lasting SWCNT dispersions of high optical quality along a broad concentration range. On the other, nanoring stability is enhanced in the presence of SWCNTs, which are suitable guests for the ring cavity and contribute to the establishment of multiple cooperative noncovalent interactions. The inhibition of these reversible interactions, by just adding, for instance, a competing solvent for hydrogen-bonding, proved to be a simple and effective method to recover the pristine nanomaterial with no trace of the dispersing agent.

8.
Angew Chem Int Ed Engl ; 56(40): 12240-12244, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28671323

RESUMO

The encapsulation of viologen derivatives into metallic single-walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration-corrected high-resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field-effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.

9.
Angew Chem Int Ed Engl ; 53(21): 5394-400, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24729452

RESUMO

Extensive research has been devoted to the chemical manipulation of carbon nanotubes. The attachment of molecular fragments through covalent-bond formation produces kinetically stable products, but implies the saturation of some of the C-C double bonds of the nanotubes. Supramolecular modification maintains the structure of the SWNTs but yields labile species. Herein, we present a strategy for the synthesis of mechanically interlocked derivatives of SWNTs (MINTs). In the key rotaxane-forming step, we employed macrocycle precursors equipped with two π-extended tetrathiafulvalene SWNT recognition units and terminated with bisalkenes that were closed around the nanotubes through ring-closing metathesis (RCM). The mechanically interlocked nature of the derivatives was probed by analytical, spectroscopic, and microscopic techniques, as well as by appropriate control experiments. Individual macrocycles were observed by HR STEM to circumscribe the nanotubes.

10.
Ultramicroscopy ; 107(6-7): 445-52, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17254714

RESUMO

Two complex perovskite-related structures were solved by ab initio from precession electron diffraction intensities. Structure models were firstly derived from HREM images and than have been confirmed independently using two and three-dimensional sets of precession intensities. Patterson techniques prove to be effective for ab initio structure resolution, specially in case of projections with no overlapping atoms. Quality of precession intensity data may be suitable enough to resolve unknown heavy oxide structures.

11.
Chem Commun (Camb) ; (15): 1686-7, 2004 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-15278137

RESUMO

Heating single-walled carbon nanotubes (SWNTs) with molten hydroxides MOH (M = K, Cs) gave MOH@SWNT in good yield; high resolution transmission electron microscopy (HRTEM) indicated that CsOH in CsOH@SWNT often adopts twisted 1D crystal structures inside SWNTs; treating MOH@SWNT with water at room temperature removes the soluble hydroxide filling and the resulting SWNTs may then be filled using aqueous solutions of uranyl acetate or uranyl nitrate at rt giving SWNTs filled with UO(2) clusters and uranyl acetate molecules.

12.
Chemistry ; 8(24): 5694-700, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12693051

RESUMO

A new perovskite-related oxide with the LaBaCuCoO5.2 composition has been stabilised. Its structure can be described as formed by the recurrent intergrowth of two alternating blocks of YBaCuFeO5 (2ac, i.e., two-fold perovskite superlattice) and YBa2Fe3O8 (3ac) structural types. From the starting material LaBaCuCoO5.2-delta (delta = 0), the rigorous control of the oxygen content has allowed the stabilisation of three new five fold perovskite-related superstructures with the compositions delta = 0.4, 0.8 and 1.1, which can also be described as recurrent intergrowths of two blocks showing 2ac and 3ac periodicity. The reduction process takes place through the 3ac periodic blocks, when 0 < delta < 0.8. Further oxygen decrease seems to involve the 2ac periodic blocks made up of pyramidal layers, giving rise to infinite layer units. The stability limit for these fivefold superstructures is delta = 1.1. In agreement with this the as-synthesised materials constitute an example of topotactic reaction, since their basic structure is kept through the reduction process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...